发布时间: 2021-07-21 整理编辑:重庆成人高考网浏览量()
等差、等比数列的性质是等差、等比数列的概念,通项公式,前n项和公式的引申.应用等差等比数列的性质解题,往往可以回避求其首项和公差或公比,使问题得到整体地解决,能够在运算时达到运算灵活,方便快捷的目的,故一直受到重视.成考中也一直重点考查这部分内容。
●难点磁场
(★★★★★)等差数列{an}的前n项的和为30,前2m项的和为100,求它的前3m项的和为_________.
●案例探究
[例1]已知函数f(x)= (x<-2).
(1)求f(x)的反函数f--1(x);
(2)设a1=1, =-f--1(an)(n∈N*),求an;
(3)设Sn=a12+a22+…+an2,bn=Sn+1-Sn是否存在最小正整数m,使得对任意n∈N*,有bn< 成立?若存在,求出m的值;若不存在,说明理由.
命题意图:本题是一道与函数、数列有关的综合性题目,着重考查学生的逻辑分析能力,属★★★★★级题目.
知识依托:本题融合了反函数,数列递推公式,等差数列基本问题、数列的和、函数单调性等知识于一炉,结构巧妙,形式新颖,是一道精致的综合题.
错解分析:本题首问考查反函数,反函数的定义域是原函数的值域,这是一个易错点,(2)问以数列{ }为桥梁求an,不易突破.
技巧与方法:(2)问由式子 得 =4,构造等差数列{ },从而求得an,即“借鸡生蛋”是求数列通项的常用技巧;(3)问运用了函数的思想.
解:(1)设y= ,∵x<-2,∴x=- ,
即y=f--1(x)=- (x>0)
(2)∵ ,
∴{ }是公差为4的等差数列,
∵a1=1, = +4(n-1)=4n-3,∵an>0,∴an= .
(3)bn=Sn+1-Sn=an+12= ,由bn< ,得m> ,
设g(n)= ,∵g(n)= 在n∈N*上是减函数,
∴g(n)的最大值是g(1)=5,∴m>5,存在最小正整数m=6,使对任意n∈N*有bn< 成立.
[例2]设等比数列{an}的各项均为正数,项数是偶数,它的所有项的和等于偶数项和的4倍,且第二项与第四项的积是第3项与第4项和的9倍,问数列{lgan}的前多少项和最大?(lg2=0.3,lg3=0.4)
命题意图:本题主要考查等比数列的基本性质与对数运算法则,等差数列与等比数列之间的联系以及运算、分析能力.属★★★★★级题目.
知识依托:本题须利用等比数列通项公式、前n项和公式合理转化条件,求出an;进而利用对数的运算性质明确数列{lgan}为等差数列,分析该数列项的分布规律从而得解.
错解分析:题设条件中既有和的关系,又有项的关系,条件的正确转化是关键,计算易出错;而对数的运算性质也是易混淆的地方.
技巧与方法:突破本题的关键在于明确等比数列各项的对数构成等差数列,而等差数列中前n项和有最大值,一定是该数列中前面是正数,后面是负数,当然各正数之和最大;另外,等差数列Sn是n的二次函数,也可由函数解析式求最值.
解法一:设公比为q,项数为2m,m∈N*,依题意有
化简得 .
设数列{lgan}前n项和为Sn,则
Sn=lga1+lga1q2+…+lga1qn-1=lga1n·q1+2+…+(n-1)
=nlga1+ n(n-1)·lgq=n(2lg2+lg3)- n(n-1)lg3
=(- )·n2+(2lg2+ lg3)·n
可见,当n= 时,Sn最大.
而 =5,故{lgan}的前5项和最大.
解法二:接前, ,于是lgan=lg[108( )n-1]=lg108+(n-1)lg ,
∴数列{lgan}是以lg108为首项,以lg 为公差的等差数列,令lgan≥0,得2lg2-(n-4)lg3≥0,∴n≤ =5.5.
由于n∈N*,可见数列{lgan}的前5项和最大.
●锦囊妙计
1.等差、等比数列的性质是两种数列基本规律的深刻体现,是解决等差、等比数列问题的既快捷又方便的工具,应有意识去应用.
2.在应用性质时要注意性质的前提条件,有时需要进行适当变形.
3.“巧用性质、减少运算量”在等差、等比数列的计算中非常重要,但用“基本量法”并树立“目标意识”,“需要什么,就求什么”,既要充分合理地运用条件,又要时刻注意题的目标,往往能取得与“巧用性质”解题相同的效果.
以上是关于“2020年重庆成考文科数学难点讲解:等差数列、等比数列”的全部内容,想获取更多关于重庆市成人高考的相关资讯,如重庆成考报名时间、报考条件、成考院校、重庆成考专业等,敬请关注重庆成考网(www.cqck.cq.cn)。
本文标签:重庆成考 文数 2020年重庆成考文科数学难点讲解:等差数列、等比数列
转载请注明:文章转载自(http://www.cqck.cq.cn/)
⊙小编提示:添加【重庆成考网】招生老师微信,即可了解2023年重庆成考政策资讯、成考报名入口、准考证打印入口、成绩查询时间以及领取历年真题资料、个人专属备考方案等相关信息!
(添加“重庆成考网”招生老师微信,在线咨询报名报考等相关问题)
对成考有疑惑?不知如何选专业?
客服老师在线答疑解惑!
重庆成考网微信公众号
随时获取重庆市成考政策、通知、公告!
重庆成考网,重庆成考,重庆成考成绩查询,重庆成考本科,重庆成考报名系统,重庆市成考成绩查询,重庆成考报名时间,重庆专升本
2021-2023 www.cqck.cq.cn All Rights Reserved. 贵州知止教育咨询有限公司 重庆成考网 版权所有
网站备案号:| 黔ICP备19008057号-121 |
声明:本站为重庆成考民间交流网站,最新成人高考动态请各位考生以市教育考试院、各市成考办最新通知为准。